

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.




          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Brokers: A Tutorial Introduction

Gazette brokers serve journals, a resource resembling a file. Journals are
append-only: bytes that have previously been written to a journal are immutable and
cannot be changed. Like files, journals may be read from any byte offset, and readers
which have caught up to the next offset to be written (called the write head) may
optionally block and have future appended content streamed to them. In this way, read
operations over journals resemble tail -c ${my_offset} -f operations over Linux files.

Unlike files, journals are frequently written to by distributed systems having many
concurrent writers, and a key function of the broker is to provide global ordering
of how raced append requests are sequenced into a journal. Crucially, writers are
assured that their entire span of appended bytes lands together (commits) in the
journal, or none of it does. Following from this, it’s never possible for two appended
spans to interleave. Readers are similarly guaranteed they’ll read only committed
journal content, and will never see a partial append that is later rolled back.

Journals are replicated for durability across multiple brokers and availability zones,
and a broker cluster is a set of broker processes which collectively balance and
provide fault-tolerant serving of many journals.


First Steps

For this introduction we’ll start a stand-alone broker. First, we’ll need an instance
of Etcd running:

# Install Etcd and start a single-member Etcd cluster.
$ GO111MODULE=on go install github.com/etcd-io/etcd
$ ~/go/bin/etcd
2019-10-21 11:57:29.465501 I | etcdmain: etcd Version: 3.3.17
2019-10-21 11:57:29.465533 I | etcdmain: Git SHA: Not provided (use ./build instead of go build)
2019-10-21 11:57:29.465536 I | etcdmain: Go Version: go1.13
2019-10-21 11:57:29.465538 I | etcdmain: Go OS/Arch: linux/amd64
... (leave this running in a tab) ...





Next we’ll install gazette and the gazctl command-line tool, start it,
and apply a spec (we’ll talk more about these moving parts in a little bit):

# Install binaries.
$ GO111MODULE=on go install go.gazette.dev/core/cmd/gazette
$ GO111MODULE=on go install go.gazette.dev/core/cmd/gazctl

# Create a local directory for fragments.
$ mkdir -p demo-fragment-store

# Start a broker.
$ ~/go/bin/gazette serve --broker.port 8080 --broker.file-root demo-fragment-store/
INFO[0000] broker configuration                          buildDate=unknown config="&{{{{local}   8080} 1024 demo-fragment-store/} {{http://localhost:2379 20s} /gazette/cluster} {info text} {}}" version=development
INFO[0000] starting broker                               endpoint="http://roland:8080" id=busy-walrus zone=local
INFO[0000] solved for maximum assignment                 assignments=0 desired=0 dur="29.044µs" hash=15853963547446721567 items=0 lastHash=0 members=1
... (leave this running in a tab) ...

# Declare a journal to play with.
$ ~/go/bin/gazctl journals apply <<EOF
name: example/journal
replication: 1
labels:
- name: app.gazette.dev/message-type
  value: TestMessage
- name: app.gazette.dev/region
  value: local
- name: app.gazette.dev/tag
  value: demo
- name: content-type
  value: application/x-ndjson
fragment:
  length: 131072
  compression_codec: SNAPPY
  stores:
  - file:///
  refresh_interval: 1m0s
EOF
INFO[0000] successfully applied                          revision=8





Now let’s issue our first append request.

$ curl -X PUT --data-binary @- http://localhost:8080/example/journal << EOF
{"Msg": "Hello, Gazette!"}
{"Msg": "See you later alligator"}
EOF





We can read our written content.

$ curl http://localhost:8080/example/journal
{"Msg": "Hello, Gazette!"}
{"Msg": "See you later alligator"}





Read requests take an offset (which defaults to 0).

$ curl "http://localhost:8080/example/journal?offset=16"
Gazette!"}
{"Msg": "See you later alligator"}





Wait a tick, that’s not valid JSON. What happened?

Well, journals are byte oriented, which means that even though we happened to
write tidy JSON payloads, the brokers see journals as simply a sequence of bytes.
Thus offsets are always byte offsets. A key take-away is that message formatting
and representation is a concern of the client, and not of the broker. The broker
doesn’t care if journals contain lines of text, streaming video, binary digits of PI,
/dev/urandom, or anything else.

That’s not to say that journals aren’t eminently suited to JSON, protobuf, or
other delimited formats, however! The rule of thumb is that, so long as clients
produce properly delimited sequences of serialized messages, the journal byte-stream
in its entirety will be a well-formed stream of messages (because individual appends
are atomic, and the broker will never interleave them).



Concurrent Appends

Let’s verify the broker properly handles concurrent appends by issuing a bunch of
raced requests (& tells the shell to start each command in the background).

$ for i in {1..20}
do
  DATA='{"Msg": "Race!", "N": '${i}$'}\n'
	curl -X PUT --data-binary "$DATA" http://localhost:8080/example/journal &
done && wait
[1] 9858
[2] 9859
[3] 9860
[1]   Done                    curl -X PUT --data-binary "$DATA" http://localhost:8080/example/journal
[2]   Done                    curl -X PUT --data-binary "$DATA" http://localhost:8080/example/journal
[4]   Done                    curl -X PUT --data-binary "$DATA" http://localhost:8080/example/journal





We expect that our raced messages landed in the journal intact. Let’s verify by
piping to jq, which will error if it encounters invalid JSON. We definitely see
that our appends were sequenced into the journal in arbitrary order.

$ curl -s http://localhost:8080/example/journal | jq -c '.'
{"Msg":"Hello, Gazette!"}
{"Msg":"See you later alligator"}
{"Msg":"Race!","N":2}
{"Msg":"Race!","N":1}
{"Msg":"Race!","N":13}
{"Msg":"Race!","N":8}
{"Msg":"Race!","N":7}
{"Msg":"Race!","N":5}
{... etc ...}





Of course, this is all running off of a stand-alone broker. How do we ensure this total
ordering in the general case, where we have lots of brokers handling requests from lots
of clients?

Briefly, at any time a given journal has exactly one broker which is coordinating every
append to that journal. The choice of which broker is determined via a distributed
assignment algorithm running atop Etcd. Other brokers in the cluster will proxy append
requests to the current primary on the client’s behalf.

One implication is that every append to a journal must pass through an assigned broker
(and usually multiple such brokers, spanning availability zones, which together make up
the journal’s replication peerset). Collectively, a distributed system cannot append to
a journal faster than those brokers can handle, no matter how many other brokers may
exist. Journals are thus the unit of scaling for Gazette, and higher write volumes are
accommodated by balancing across larger numbers of journals as well as brokers. We’ll
talk about how to do this a bit later.

Don’t worry, though: journals are still plenty fast. For storage efficiency it’s
usually a good idea to have Gazette compress journals on your behalf, and in practice
the bottleneck of appending to a journal tends to be how quickly Snappy or Gzip can run.



Streaming Reads

We can also use blocking reads to have journal content streamed to us as it commits.
Here we use offset=-1 to tell the broker we want to begin reading from the current
write head. Note that curl and jq will run until we Ctrl-C them.

$ curl -sN "http://localhost:8080/example/journal?block=true&offset=-1" | jq -c '.'





Try appending to the journal. Notice how our curl updates with each journal write:
the broker is pushing new content to us over a singled long-lived HTTP response.

Brokers have no notion of subscriptions, consumer queues, or other state aside from
that which serves an active read stream. It’s on readers to track the offset they’ve
read through and, when their stream must eventually be restarted, to supply that offset
to the broker. While this may appear tedious, it’s important for the construction of
correct, stateful readers with exactly-once processing semantics that they “own” their
consumption offsets. Plus, Gazette has client-side facilities to help manage this
tracking for you.



gRPC API

As we’ve seen, brokers present journals over an HTTP API using familiar GET and PUT
verbs. One callout is that journals are natively presented over a gRPC service, and
what we’re actually interacting with here is an HTTP gateway that brokers offer, wrapping
the gRPC Journal service.

The HTTP gateway is handy for building simple clients or reading journals from a
web browser, but at high volumes in production a native gRPC client should be used
instead (such as the Gazette Go client [https://godoc.org/github.com/gazette/core/broker/client]).

Gazette also offers a fully-featured tool gazctl which can often make quick work of
efficiently integrating legacy or Gazette-unaware applications.



Gazctl: Gazette’s Soup-to-Nuts CLI Tool

Gazctl is a command-line tool for interacting with a Gazette cluster. Most anything
you can do with Gazette, you can do from gazctl. It’s the go-to tool for:


	Fetching, adding, removing, and updating journals served by the cluster.


	Integrating non-native applications or batch processing pipelines.


	Inspecting and administering a Gazette broker or consumer cluster.




Gazctl can be directly go install’d. Run it without arguments, or run any sub-command
with the --help flag for detailed documentation on the tool’s capabilities and usage.

$ GO111MODULE=on go install go.gazette.dev/core/cmd/gazctl
$ ~/go/bin/gazctl





We’ll use gazctl going forward for the rest of this tutorial. Gazctl understands the
BROKER_ADDRESS environment variable, or we can create an optional configuration file
at $HOME/.config/gazette/gazctl.ini.

$ mkdir -p ~/.config/gazette/ && cat > ~/.config/gazette/gazctl.ini << EOF
[journals.Broker]
Address = http://localhost:8080
EOF





We can append to our journal and stream its content from gazctl.

$ gazctl journals append -l name=example/journal << EOF
{"Msg": "Hello, Gazctl!"}
EOF
$ gazctl journals read -l name=example/journal --block
{"Msg": "Hello, Gazctl!"}





The simple examples in this tutorial belie how powerful and expressive the read,
append, and other sub-commands really are. Be sure to look over their documentation.



Fragments

As setup for this section, let’s use gazctl to write a message with the current date every second.

$ while true; do sleep 1 && echo '{"Msg": "'$(date)'"}' ; done | \
	gazctl journals append -l name=example/journal --framing=lines





Now poke at read internals a bit by enabling debug logging. We see:


	That our --tail offset of -1 was resolved to an explicit offset 41172,


	That offsets increment with each chunk of read content, and


	Each chunk references a “fragment” that its offset falls within.




$ gazctl journals read -l name=example/journal --tail --block --log.level=debug
INFO[0000] read started                                  journal=example/journal offset=0
DEBU[0000] read is ready                                 fragment.Begin=14 fragment.End=41215 fragment.URL= journal=example/journal offset=41172
{"Msg": "Mon 29 Jul 2019 11:34:29 PM EDT"}
DEBU[0001] read is ready                                 fragment.Begin=14 fragment.End=41258 fragment.URL= journal=example/journal offset=41215
{"Msg": "Mon 29 Jul 2019 11:34:30 PM EDT"}
DEBU[0002] read is ready                                 fragment.Begin=14 fragment.End=41301 fragment.URL= journal=example/journal offset=41258
{"Msg": "Mon 29 Jul 2019 11:34:31 PM EDT"}





A key property of journals is that, once an offset range of a journal is written,
it can never change. Gazette uses the term fragment to describe these byte-ranges of a
journal, formally defined by (journal-name, begin-offset, end-offset, and SHA1-sum). A
constraint of fragments is that their [begin, end) byte spans never subdivide a run of
bytes appended by a client. Put differently, fragments contain only whole client appends,
and if those appends each consist of properly delimited messages, then so does the
fragment.

A fragment file is a file of raw journal content, written under a naming scheme which
incorporates the fragment definition itself. These files have some interesting properties:
like journals, they’re immutable. They’re content-addressed. With a little care in their
naming scheme we can ensure that filename order corresponds to relative offset order,
such that a directory listing is itself a sorted index over offsets.

A strategy begins to emerge: BLOB services like Amazon S3, Google Cloud Storage, Azure,
etc are very good at inexpensively storing and serving huge sets of files that are
written once and never change. They’re familiar, easy to operate, and offer a total
read throughput which scales linearly with the number of files stored. For most
organizations, “read all of my data in S3, all at once” is a perfectly sane thing to do.

Gazette brokers make good use of BLOB stores by offloading all but the very most recent
content of a journal. Everything else is persisted to a configured store as soon as is
feasible, optionally after compression, and brokers then use file listings to maintain
an index of journal offsets and covering fragment files. A requested read into historical
portions of the journal is satisfied by opening its covering fragment file, seeking to the
desired offset, and proxying data to the client.

But we can do better. A mildly intelligent client can be told of the existence of a
fragment file that satisfies its requested offset, and then go read it directly from
the store. S3, Google Cloud Storage, and Azure Blob Store even support signed URLs, which
enable the broker to authorize the bearer to a specific file in a time-bound manner. The
client need not even posses general access rights to the storage bucket.

This offloading of client reads is an especially powerful property. When you consider
that brokers are responsible for the recording of critical writes in a system–writes
you cannot afford to lose–you really don’t want those same brokers and disks to also
be serving large-scale replays of historical events. This is a recipe for an outage.
A client supporting read offload, by comparison, need only occasionally ask the broker
where to find the next chunk of data and, once caught up to the near-present, it then
seamlessly transitions to streaming from the broker itself. With read offload even
massive-scale replays contribute negligible load on broker clusters, and can be done
with impunity.

Even better, cloud pricing structures mean that offloaded reads have cost efficiencies:


	They’re (nearly) free from any zone of their region, imposing no inter-zone transfer cost.


	They throw in effectively unbounded read IOPs capacity. No need to provision & pay for
persistent disks with suitable IOPs to keep reading applications fed.


	They can even perform decompression on your behalf, to save CPU cycles.




Picking up the thread of the tutorial, gazctl has a fragments command for listing
fragments of our journal.

$ gazctl journals fragments -l name=example/journal 
+-----------------+--------+---------+---------------+-----------------+-------------+
|     JOURNAL     | OFFSET | LENGTH  |   PERSISTED   |      SHA1       | COMPRESSION |
+-----------------+--------+---------+---------------+-----------------+-------------+
| example/journal |      0 | 43 B    | 8 minutes ago | 92a7ee0e4be7... | SNAPPY      |
| example/journal |     43 | 2.3 KiB | 7 minutes ago | e3c86a45d870... | SNAPPY      |
| example/journal |   2365 | 2.5 KiB | 6 minutes ago | c06eb3b317c0... | SNAPPY      |
| example/journal |   4902 | 2.5 KiB | 5 minutes ago | 6c651e79c7fe... | SNAPPY      |
| example/journal |   7482 | 2.5 KiB | 4 minutes ago | 1eceb1b39740... | SNAPPY      |
| example/journal |  10062 | 2.5 KiB | 3 minutes ago | 579e03e6202f... | SNAPPY      |
| example/journal |  12599 | 2.5 KiB | 2 minutes ago | f65f0b59f423... | SNAPPY      |
| example/journal |  15179 | 2.5 KiB | 1 minute ago  | 49b43a078397... | SNAPPY      |
| example/journal |  17759 | 2.5 KiB |               | fd560d3b9033... | SNAPPY      |
| example/journal |  20296 | 1.9 KiB |               | 6882ce2d56fd... | SNAPPY      |
+-----------------+--------+---------+---------------+-----------------+-------------+





When running in “demo” mode, the broker creates a local demo-fragment-store directory
into which fragments are persisted and which we can inspect. In a real deployment a BLOB
store or mounted NAS array would be used instead (and we would also configure for much
larger fragments). Fragments are named by their offsets and SHA1 sum using zero-padding
and hex-encoding, which preserves the relative offset ordering of file names. Notice how
the latest 6882ce fragment from our above listing doesn’t exist yet: it’s actively being
appended to by the broker. We see all others have been persisted.

$ ls -lR demo-fragment-store/
demo-fragment-store/example/journal:
total 36
-rw------- 1 johnny johnny  61 Jul 30 12:42 0000000000000000-000000000000002b-92a7ee0e4be7a03fd1a3224055a9d6b7bbd6125e.sz
-rw------- 1 johnny johnny 339 Jul 30 12:43 000000000000002b-000000000000093d-e3c86a45d87051716caa2b6b5dcc7be77d4e21bb.sz
-rw------- 1 johnny johnny 365 Jul 30 12:44 000000000000093d-0000000000001326-c06eb3b317c0e42696e2dd2bc2e07a589b5c4bf7.sz
-rw------- 1 johnny johnny 370 Jul 30 12:45 0000000000001326-0000000000001d3a-6c651e79c7fe8847c41264e90efaea8c28cacf59.sz
-rw------- 1 johnny johnny 370 Jul 30 12:46 0000000000001d3a-000000000000274e-1eceb1b39740fd0accb1de8d4654fafa2f20db24.sz
-rw------- 1 johnny johnny 365 Jul 30 12:47 000000000000274e-0000000000003137-579e03e6202f1fe7ae7c9eaeaa6342b4cfb1483e.sz
-rw------- 1 johnny johnny 370 Jul 30 12:48 0000000000003137-0000000000003b4b-f65f0b59f423266775e4d8ba075e56adba296b1f.sz
-rw------- 1 johnny johnny 370 Jul 30 12:49 0000000000003b4b-000000000000455f-49b43a0783974daee3ff4265b1e418097de1472a.sz
-rw------- 1 johnny johnny 365 Jul 30 12:50 000000000000455f-0000000000004f48-fd560d3b90331733704959f1c0608b4c7c690537.sz





A couple of final comments on fragments:

Gazette can be trivially integrated with existing batch processing workflows through
fragment files. After all, they have no special encoding and hold only raw journal
content. They’re written to the BLOB store in a regularized, ascending order prefixed
by journal name. A Map/Reduce, Spark Streaming, or other traditional batch workflow need
only know where to pick up new files. The gazctl fragments sub-command can further help
with this; see its documentation for more discussion.

From an architecture perspective, fragments and their stores are at the heart of how
brokers themselves are able to stay ephemeral, disposable, and fast to scale. A broker can
begin serving journal reads as soon as it completes a fragment store file listing. Or a new
broker can be integrated into a journal’s replication peerset by having that peerset close
its current fragment and “roll” to a new & empty one at the current write head. No data
migrations are ever required to “catch up” a broker. Nor must we ever wait for a faulted
broker to restart and re-join the peerset, potentially gating new appends until it does: as
soon as a broker has faulted, it’s immediately and permanently replaced. The broker’s one
cardinal responsibility is to ensure that all fragments it previously replicated are
promptly persisted to backing stores. Other than this, they can come and go freely.
Brokers are cattle, not pets.



JournalSpecs

So far we’ve worked with a single journal, but an active production cluster will often
serve hundreds of journals, thousands, or more. The list sub-command is used to list
journals of the cluster and their current assigned brokers. Right now we have just one
journal. Let’s fix that. But first, we’ll talk about working with journal representations.

$ gazctl journals list --primary
+-----------------+-------------+
|      NAME       |   PRIMARY   |
+-----------------+-------------+
| example/journal | busy-walrus |
+-----------------+-------------+





As mentioned, Gazette relies on Etcd for consensus over distributed state of the system,
such as current broker-to-journal assignments and even the set of
JournalSpecs.
Specs like JournalSpec define the existence and desired behavior of entities in Gazette. If
you come from Kubernetes, this will feel familiar and indeed Gazette uses specs in
analogous ways. We can use gazctl to fetch our single JournalSpec in YAML form.
examples.journalspace.yaml
has an extended writeup of the YAML format and individual fields, so we won’t cover it here.

$ gazctl journals list --format yaml
name: example/journal
replication: 1
labels:
- name: app.gazette.dev/message-type
  value: TestMessage
- name: app.gazette.dev/region
  value: local
- name: app.gazette.dev/tag
  value: demo
- name: content-type
  value: application/x-ndjson
fragment:
  length: 131072
  compression_codec: SNAPPY
  stores:
  - file:///
  refresh_interval: 1m0s
  retention: 1h0m0s
  flush_interval: 1m0s
revision: 3





Gazctl has an apply sub-command for modifying JournalSpecs. Here we modify the above output
to switch from SNAPPY to GZIP compression.

$ gazctl journals apply << EOF
name: example/journal
replication: 1
labels:
- name: app.gazette.dev/message-type
  value: TestMessage
- name: app.gazette.dev/region
  value: local
- name: app.gazette.dev/tag
  value: demo
- name: content-type
  value: application/x-ndjson
fragment:
  length: 131073
  compression_codec: GZIP
  stores:
  - file:///
  refresh_interval: 1m0s
  retention: 1h0m0s
  flush_interval: 1m0s
revision: 3
EOF
INFO[0000] successfully applied                          revision=5





Gazctl also has an edit sub-command which will be familiar to kubectl users,
and is convenient shorthand for this common “list, modify, then apply” workflow.

$ gazctl journals edit -l name=example/journal





Finally, let’s use apply to create some new journals.

$ gazctl journals apply << EOF
name: foobar/
replication: 1
labels:
- name: content-type
  value: application/x-ndjson
- name: my-label
fragment:
  length: 4096
  compression_codec: GZIP
  stores:
  - file:///
  refresh_interval: 1m0s
  flush_interval: 1m0s
children:
  - name: foobar/part-000
  - name: foobar/part-001
  - name: foobar/part-002
EOF
INFO[0000] successfully applied                          revision=7





Our new journals now appear in list, assigned to our broker.

$ gazctl journals list --primary
+-----------------+-------------+
|      NAME       |   PRIMARY   |
+-----------------+-------------+
| example/journal | busy-walrus |
| foobar/part-000 | busy-walrus |
| foobar/part-001 | busy-walrus |
| foobar/part-002 | busy-walrus |
+-----------------+-------------+





Try starting another broker instance (this time, omitting the --broker.port flag).
You’ll see that they re-assign journals to balance across available broker processes.
Use gazctl journals list to confirm this. Reads and appends of any journal may be
directed to any broker. If the request reaches a broker which cannot serve the
request, it will proxy on our behalf to a broker that can.



Labels and Selectors

Since journals are the unit of scale for brokers, you’ll sometimes want to spread a
collection of like records across many journals. This is commonly called a “topic”,
where individual journals serve as partitions of the topic. Indeed, topics and
partitioning are an essential strategy for building highly-scaled systems.

However, you’ll find that brokers have no APIs for managing topics. Nor is it a field of
JournalSpecs. We arguably defined a grouping above by using a common foobar/ prefix,
but this is purely convention: journal names are a flat key-space and the / has no
special meaning. In fact, topics have no formal definition anywhere in the Gazette
codebase. What gives?

A key insight is that a topic, and the data which is referred to by that topic, is really
in the eye of the beholder. By way of example, we might have a collection of QueryLog
events that we want to model as a topic. Suppose these are generated from serving in various
regions, like us-east-1 or eu-west-1. Further suppose we have distinct web and mobile
apps which both generate this event type. It becomes a bit messy to define what the
topic(s) of QueryLogs should be. Is it all of them? Segregated by serving region? Or by
whether it came from the web vs mobile app? Both? What about the query sub-type? It’s hard
(or impossible!) to define precise topics ahead of time, without perfect knowledge of how
they’ll ultimately be used. Fortunately we don’t have to.

Gazette uses a concept of labels to capture metadata of a journal, such as its message
type, serving region, or anything else, and selectors for querying sets of journals by
their labels. If you’re familiar with Kubernetes
Labels and Selectors [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/],
their implementation in Gazette works almost identically. When creating or editing a journal,
best practice is to also populate labels for that journal. The choice of labels and values
is arbitrary and teams can evolve their own meanings over time, but Gazette does
provide some conventions.

Having done this, it turns out that label selectors become an excellent way to define
“topics” on a ex post facto basis. Each application that consumes QueryLogs can define
for itself what dimensions are desired for its use-case, and by crafting an appropriate
selector, then be assured of processing the set of partitions that exist now or in the
future.

Gazette labels have one deviation from the Kubernetes implementation worth calling out,
which is that labels are a multi-map: a label can be repeated with distinct values. A
selector selects on any matched included value, and disallows a match on any excluded
value.

We’ve actually been using label selectors this whole time via the -l flag. Every journal
has two labels which are implicitly defined: name, which is the exact journal name, and
prefix, which matches any prefix of the journal name that ends in /. Let’s close out
this tutorial by trying out some examples.

$ gazctl journals list -l prefix=example/
+-----------------+
|      NAME       |
+-----------------+
| example/journal |
+-----------------+
$ gazctl journals list -l prefix=foobar/
+-----------------+
|      NAME       |
+-----------------+
| foobar/part-000 |
| foobar/part-001 |
| foobar/part-002 |
+-----------------+
$ gazctl journals list -l app.gazette.dev/message-type=TestMessage
+-----------------+
|      NAME       |
+-----------------+
| example/journal |
+-----------------+
$ gazctl journals list -l my-label
+-----------------+
|      NAME       |
+-----------------+
| foobar/part-000 |
| foobar/part-001 |
| foobar/part-002 |
+-----------------+
$ gazctl journals list -l "name in (example/journal, foobar/part-001)"
+-----------------+
|      NAME       |
+-----------------+
| example/journal |
| foobar/part-001 |
+-----------------+
$ gazctl journals list -l "prefix=foobar/, name not in (foobar/part-001)"
+-----------------+
|      NAME       |
+-----------------+
| foobar/part-000 |
| foobar/part-002 |
+-----------------+









          

      

      

    

  

    
      
          
            
  
Building and Testing Gazette

Most binaries and packages are “pure” Go and can be directly go-installed and go-tested:

$ export GO111MODULE=on

$ go install go.gazette.dev/core/cmd/gazette
$ go install go.gazette.dev/core/cmd/gazctl
$ go test go.gazette.dev/core/broker/...
$ go test go.gazette.dev/core/consumer





Certain packages used by consumer applications, like go.gazette.dev/core/consumer/store-rocksdb,
require CGO to build and also require appropriate development libraries for RocksDB.
Standard Linux packages are insufficient, as run-time type information must be enabled
in the RocksDB build (and it’s turned off in the standard Debian package, for example).

Gazette uses a Make-based build system which pulls down and stages
development dependencies into a .build sub-directory of the repository root:

$ make go-install
$ make go-test-fast





Continuous integration builds of Gazette run tests 15 times, with race detection enabled:

$ make go-test-ci





The Make build system offers fully hermetic builds using a Docker-in-Docker
builder:

# Run CI tests in a hermetic build environment.
$ make as-ci target=go-test-ci

# Package release Docker images for the Gazette broker and examples.
$ make as-ci target=ci-release-broker
$ make as-ci target=ci-release-examples





Deploy Gazette’s continuous soak test to a Kubernetes cluster (which can be
Docker for Desktop or Minikube):

# Run the soak test with official `latest` images.
$ kubectl apply -k ./kustomize/test/deploy-stream-sum-with-crash-tests/





The kustomize directory also has a
helper manifest
for using a local registry (eg, for development builds)




          

      

      

    

  

    
      
          
            
  
Design Brief: Exactly-once Semantics in Gazette


Overview

Gazette provides exactly-once processing semantics over messages, sometimes also known
as “effectively-once”. The formal guarantees that Gazette offer are that:


	A message A will be processed in exactly one completed consumer transaction.


	Any updates to the consumer’s stateful store which are derived from A will commit exactly once.


	Any published messages B, derived from A, will be read exactly once by any downstream
read-committed reader (including other consumers).




These guarantees also cascade through multiple consumers, providing an overall end-to-end
assurance that the effects of a message will be committed just once regardless of how that
message is transformed, decomposed, aggregated, re-combined, etc as it passes from consumer
to consumer.

It’s important to note that Gazette cannot guarantee that the application’s ConsumeMessage
or FinalizeTxn functions will be invoked exactly once for a given message. Also possible is
that duplicate read-uncommitted messages B derived from A will be published, or that
changes to the store from A may be staged multiple times. The precise guarantee Gazette makes
is that exactly one of those transactions will go on to commit, and similarly that one message
B will be read by a read-committed reader.



Message UUIDs

Journal appends in Gazette are at-least-once, meaning a particular message byte serialization
may commit to a journal multiple times.

To account for this, messages in Gazette are sequenced using
RFC 4122 v1 UUIDs [https://tools.ietf.org/html/rfc4122], which are composed of:


	A “node ID” which identifies the unique message source
(also known within Gazette as a ProducerID).


	A timestamp, with resolution to 100 nanoseconds.


	A clock sequence, which provides further bits to distinguish UUIDs having the same
node ID and timestamp. Gazette re-purposes some of these bits to use as
flags.




Within Gazette, UUID timestamps and clock sequence bits are generated from a
strictly monotonic Clock which ticks with each UUID generated.
Every Publisher instance likewise draws a new and
random ProducerID.

The combination of these properties allows a reader to efficiently de-duplicate
messages by tracking the largest Clock seen for each ProducerID. Read messages
having smaller clocks are presumed duplicates and can be discarded.

UUIDs are also used to represent transaction semantics via encoded flags. An
application can author a set of messages which will be atomically applied
or rolled-back, by publishing each “pending” message with flag CONTINUE_TXN,
and applying them via an ACK_TXN message, which commits all pending
messages having a smaller Clock (and rolls-back those having a larger one).

ReadUncommittedIter reads uncommitted messages from a
journal, which may include duplicates and pending messages which have not yet committed,
or may be rolled back.

Sequencer observes read-uncommitted messages from journals
and sequences them into read-committed messages. For efficiency it uses a tunable
ring-buffer of read messages so that, in most cases, messages can be directly
read from the ring upon observing an ACK_TXN which commits them. In cases where
the ring buffer is insufficient, Sequencer will re-read the relevant portion of the
journal to deliver acknowledged messages. An advantage of the design is that no
head-of-line blocking occurs: committed messages are immediately dequed upon observing
their corresponding ACK_TXN, even if they’re interleaved with still-pending messages
of other producers. Gazette is also able to guarantee that downstream consumers of a
published-to journal will process the entire set of acknowledged messages within a
single consumer transaction (this guarantee does not extend beyond a single journal,
however).

ReadCommittedIter composes a ReadUncommittedIter with a
Sequencer to read committed messages of a journal.

Gazette messages are arbitrary user-defined types, and journals themselves
hold only raw user data. Gazette therefore asks that user Message
types help with representation by taking, serializing, and when asked, returning
UUIDs generated by Gazette. UUIDs may also be directly useful to users, as they’re
universally unique and they encode a precise publishing timestamp. In some cases,
user types may be unable to represent a UUID. In these cases, the Message
interface can be implemented as no-ops to opt the type out of exactly-once
processing, falling back to at-least-once semantics.



Consumer Shard Transaction Lifecycle

Each shard of a consumer Application processes
messages in pipelined transactions. While each transaction runs:


	At least one Message will be processed from a source journal.


	Reads and modifications of a Store are made,
scoped to a transaction provided by the store (eg, a RocksDB WriteBatch, or a SQL transaction).


	A number of uncommitted messages may be published to downstream journals,
identified by a Publisher & ProducerID which is unique to the shard assignment.




So far, no effects of the transaction are yet observable by a read-committed
reader or from the Store itself. Eventually the consumer transaction will begin to
commit (eg because further messages are not immediately available for processing).

At this point a consumer Checkpoint is assembled,
which consists of:


	Offsets of each source journal through which uncommitted messages have been read.


	ProducerStates of each producer tracked by the Sequencer.


	“Intents” of messages to be written, which acknowledge uncommitted messages
published during the transaction (also known as “ACK intents”).




The checkpoint is added to and then commits with the store transaction. Only once
the transaction commits (and never before), ACK intents of the checkpoint are written to
inform downstream readers that pending messages have committed.

It’s possible that a fault may occur after transaction commit, but before ACK intents are
written (or after they’re partially written). For this reason, on process assignment / shard
startup, shards recover the most recent Checkpoint from their Store and immediately
publish (or re-publish) its ACK intents. If a fault previously occurred after commit but
before all intents were published, then this ensures delivery of those acknowledgements.
If a fault instead occurred in the middle of a transaction, this rolls-back any pending
messages of that abandoned transaction. ACK intents captured in checkpoints thus represent
an atomic commit (or roll-back) of messages published in the course of building that
checkpoint, even where those messages are large in number and span many journals, or in the
presence of arbitrary faults.

Every Publisher instance uses a unique ProducerID, which must be independently
tracked by all Sequencers. While the state for each producer is lightweight (just
a byte offset and Clock), this can add up over time. Consumers employ pruning to
age-out states of ProducerIDs which are no longer active.



Store Fencing

Shards are assigned (and re-assigned) across many distributed consumer processes
which may come, go, and fail arbitrarily. There may be races where a shard which
is re-assigned from process Old to New may be processed by both simultaneously
(here, Old is sometimes referred to as a “zombie”). During this race there’s a
potential for:


	Old to commit transaction T1, then


	New to recover T1, then


	Old to commit T2, write ACK intents, and exit.




This breaks exactly-once semantics: some derived messages may be written more than
once, and messages may be applied to the store multiple times. To account for this,
it must be the case that after New recovers T1, it’s no longer possible for
Old to commit a transaction. In other words, New must place a
write fence [https://en.wikipedia.org/wiki/Memory_barrier] on startup.

External Stores may leverage transactional features of a remote store to implement fences.
For example, StoreSQL increments a SQL fence on
RestoreCheckpoint, causing a future commit of a zombie process to fail.

Embedded Stores such as StoreJSONFile or
StoreRocksDB, which make use of
recovery logs [https://godoc.org/github.com/gazette/core/consumer/recoverylog],
use journal “registers” to implement fencing across processes.



Recovery Logs and Register Fencing

Journal Registers are (very small) collections
of arbitrary keys and values which are associated to a journal, and participate in that
journal’s transactional append machinery. Append RPCs may check that registers match an
expectation in order to proceed, and so long as they append at least one byte, they may
update the registers of the journal.

When a shard process assignment becomes primary, it completes recovery log playback by
injecting a “handoff”, which takes over
sequencing of recorded operations in the log and places an updated “author” register
fence upon it. As it processes transactions, its Recorder
to the log verifies the “author” fence it previously placed with each recorded operation.
When the next assigned process finishes playback and injects a hand-off, it fences off
any further appends of this Recorder from applying to the journal, ensuring it can no
longer commit a consumer transaction checkpoint.





          

      

      

    

  

    
      
          
            
  
Finding Cycles in Bike-Share Streams

In this walk through, we’ll be building a continuous data pipeline for processing
Citi Bike system data [https://www.citibikenyc.com/system-data] using the Gazette
consumer [https://godoc.org/go.gazette.dev/core/consumer] framework.

The implementation can be found in package
go.gazette.dev/core/examples/bike-share [https://godoc.org/go.gazette.dev/core/examples/bike-share].


Objectives

We’ve been asked to help with an anomaly detection task: we want to find cases
where a Citi Bike completes a graph cycle starting and ending at a station T,
without re-visiting T in between. We assume shorter graph cycles are common,
but want to find longer instances (having a path length of at least 10).

Bikes will sometimes be relocated from one station to another in the Citi Bike
system, which appears in our ride data as having magically moved between stations.
We want to filter these cases out to retain only “true” cycles of our… cycles.

Finally, we’ll offer a “history” API which serves the most recent rides of
a given bike ID.



Deploy the Example to Kubernetes

Deploy the example to the bike-share namespace of a test Kubernetes cluster,
such as Minikube or Docker for Desktop:

$ kubectl apply --kustomize ./kustomize/test/deploy-bike-share/
namespace/bike-share created
serviceaccount/minio created
configmap/etcd-scripts-24t872gm88 created
configmap/example-journal-specs created
configmap/gazette-zonemap created
configmap/minio-create-bucket-mm6f469cbt created
configmap/postgres-init created
configmap/shard-specs-bike-share-7b52ht4t87 created
configmap/stream-rides-bike-share-thbh946769 created
secret/gazette-aws-credentials created
secret/minio-credentials-fgdm8fkm5m created
service/consumer-bike-share created
service/etcd created
service/gazette created
service/minio created
service/postgres created
deployment.apps/consumer-bike-share created
deployment.apps/gazette created
deployment.apps/minio created
statefulset.apps/etcd created
statefulset.apps/postgres created
job.batch/apply-journal-specs created
job.batch/apply-shard-specs-bike-share created
job.batch/minio-create-bucket created
job.batch/stream-rides-bike-share created

# After giving pods a moment to start:
$ kubectl -nbike-share get pod
NAME                                   READY   STATUS      RESTARTS   AGE
apply-journal-specs-xr4vw              0/1     Completed   0          112s
apply-shard-specs-bike-share-5g8cb     0/1     Completed   0          112s
consumer-bike-share-78bcdbcf8b-q9vxl   1/1     Running     0          112s
consumer-bike-share-78bcdbcf8b-t85tb   1/1     Running     0          112s
etcd-0                                 1/1     Running     0          112s
etcd-1                                 1/1     Running     0          102s
etcd-2                                 1/1     Running     0          98s
gazette-5d87c4fdb-7fm9b                1/1     Running     0          112s
gazette-5d87c4fdb-7fzcj                1/1     Running     0          112s
gazette-5d87c4fdb-djzfq                1/1     Running     0          112s
minio-7695c66fd8-p87fj                 1/1     Running     0          112s
minio-create-bucket-4bdcb              0/1     Completed   0          112s
postgres-0                             1/1     Running     0          112s
stream-rides-bike-share-p5b8k          1/1     Running     0          112s





Along with the application itself, the Kustomize manifest has deployed a few
dependencies:


	A gazette broker deployment, of course.


	Minio is a self-contained, S3-compatible BLOB store to which fragments are persisted.


	A StatefulSet of etcd pods are used by gazette broker and consumer-bike-share
application pods for process grouping, storage of specifications, and managing
process work assignments.


	One-time jobs to apply-journal-specs and apply-shard-specs.


	A postgres database for our application to talk to.


	A stream-rides job, which appends Citi Bike system records at a rate of ~3k QPS.






Configure Gazctl for Cluster Access

Gazctl supports a global configuration file at ~/.config/gazette/gazctl.ini (see gazctl --help).
Use it in combination with a couple of port-forwards to access cluster services:
this works even for deployments scaled to many machines & pods, because brokers
and consumers will proxy requests on our behalf.

# If you haven't already, install gazctl.
$ GO111MODULE=on go install go.gazette.dev/core/cmd/gazctl

$ mkdir -p ~/.config/gazette
$ cat > ~/.config/gazette/gazctl.ini <<EOF
[journals.Broker]
Address = http://localhost:32180

[shards.Broker]
Address = http://localhost:32180

[shards.Consumer]
Address = http://localhost:32190
EOF

# Start long-lived port-forwards to a broker and consumer pod, in their own terminal tabs.
$ kubectl -nbike-share port-forward svc/gazette             32180:8080
$ kubectl -nbike-share port-forward svc/consumer-bike-share 32190:8080

# Also port-forward for Postgres access.
$ kubectl -nbike-share port-forward svc/postgres            32432:5432







Examining “Topics”

Several JournalSpecs have been applied, to which ride records and found cycles
are written. These specs use Gazette’s recommended
label names and values [https://godoc.org/go.gazette.dev/core/labels], which are
modeled after and extend
Kubernetes Recommend Labels [https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/#labels].
Like kubectl, gazctl supports familiar -l and -L flags to
select over and list labels attached to resources (many other flags are also
supported; check --help). Let’s use them to inspect example journals in the cluster:

$ gazctl journals list -l example-name=bike-share -L app.gazette.dev/message-type -L content-type
+---------------------------------------------------+------------------------------+-----------------------------------+
|                       NAME                        | APP GAZETTE DEV/MESSAGE-TYPE |           CONTENT-TYPE            |
+---------------------------------------------------+------------------------------+-----------------------------------+
| examples/bike-share/cycles/part-000               | bike_share.Cycle             | application/x-ndjson              |
| examples/bike-share/cycles/part-001               | bike_share.Cycle             | application/x-ndjson              |
| examples/bike-share/recovery-logs/cycles-part-002 | <none>                       | application/x-gazette-recoverylog |
| examples/bike-share/recovery-logs/cycles-part-003 | <none>                       | application/x-gazette-recoverylog |
| examples/bike-share/rides/part-000                | bike_share.Ride              | text/csv                          |
| examples/bike-share/rides/part-001                | bike_share.Ride              | text/csv                          |
| examples/bike-share/rides/part-002                | bike_share.Ride              | text/csv                          |
| examples/bike-share/rides/part-003                | bike_share.Ride              | text/csv                          |
+---------------------------------------------------+------------------------------+-----------------------------------+





There are four partitions of -l app.gazette.dev/message_type=bike_share.Ride
with MIME content-type text/csv, matching our data source. These are journals
to which Citi Bike system records are written. Two partitions of
-l app.gazette.dev/message_type=bike_share.Cycle have also been created with
content-type application/x-ndjson
(newline-delimited JSON [https://github.com/ndjson/ndjson-spec]).
They’ll hold completed Cycles found by our consumer. Finally, there are two
journals used for “recovery logs”. We’ll talk about these more later.


Gazette has no formalized implementation of a “topic”. Instead, resources
(journals and shards) are described using labels and enumerated using label
selectors.






Preparing the Dataset

The stream-rides job is running a
stream_rides.sh
script which pulls down, unpacks, and streams a portion of the Ciki Bike system data.
In this section we’ll unpack the pieces of the processing pipeline that it’s running.

It begins by fetching a portion of the dataset:

$ curl -o 201909-citibike-tripdata.csv.zip https://s3.amazonaws.com/tripdata/201909-citibike-tripdata.csv.zip
$ unzip 201909-citibike-tripdata.csv.zip





It then runs records through a gazctl attach-uuids Unix pipeline.
The Gazette broker service provides an at-least-once guarantee: it’s possible
that an Append RPC is reported to the client as failed, requiring that the client
retry, even though the append was actually applied.

To support exactly-once message semantics atop an
at-least-once broker service, Gazette asks that messages take and carry a v1 UUID
which it provides. The UUID composes the pieces required for exactly-once processing,
such as a unique ProducerID [https://godoc.org/go.gazette.dev/core/message#ProducerID]
and a monotonic Clock [https://godoc.org/go.gazette.dev/core/message#Clock] (which,
together, act as a Lamport timestamp [https://en.wikipedia.org/wiki/Lamport_timestamps]).

Use the gazctl attach-uuids tool to simplify generating and attaching UUIDs.
It generates a UUID for each read input line and runs a configurable Go
text/template to combine into a final output (see its --help for more discussion).


When processing files in preparation for append to Gazette, it’s best practice
to attach UUIDs into new temporary file(s), and then append the temporary
files to journals. This ensures messages are processed only once even if the
preparation or append steps fail partway through and are restarted.

Avoid appending many small files in this way, as each unique ProducerID and
Clock must be tracked by read-committed readers. Instead, first combine many
small files into few large ones before attaching UUIDs.

For streaming data sources, attach-uuids can be composed into a Unix pipeline
which processes and appends each record as it arrives.




After attaching UUIDs, the stream_rides.sh script runs records through an awk pipeline.
When appending a given CSV row, we have to choose among multiple partitioned journals.
A sensible first strategy would be to select a journal at random for each record. Random
routing provides a strong guarantee that our data will distribute evenly across all
journal partitions, and is incredibly easy to scale. If we instead partition on a key
derived from the message, consideration must always be payed to how write volume
will distribute across journals: is our choice of partition key reasonably uniform?
Or does it exhibit heavy skew?


Many real-world partition schemes have lots of skew, aka “hot keys”. A powerful
pattern to help mitigate this is to introduce a second processing stage. First append
high-volume messages randomly across partitions, which ensures they’re well-balanced.
Then introduce a consumer which performs limited reduction, typically just in the
context of a current consumer transaction, and which then emits lower-volume message
aggregates which are partitioned on the desired key.




For this use case we partition on “Bike ID”, so that all rides of a given bike are
routed to the same journal partition. journals append implements several mapping
functions controlled via --mapping, such as random and modulo. The latter
requires that the partition key appear alone on a line preceding its value. The
stream_rides.sh script uses an awk pipeline to do so:

# Use awk to pluck the bike ID onto its own line, followed by the full record.
$ awk -F "," '{print $13}{print}' 201909-citibike-tripdata.csv.with_uuids | head





We can put these steps together and start a streaming load of bike-share data
points into our journals. stream_rides.sh uses the pv tool to rate-limit
appends, turning the dataset into a streaming source:

$ awk -F "," '{print $13}{print}' 201909-citibike-tripdata.csv.with_uuids \
    | pv --line-mode --quiet --rate-limit 10 \
    | gazctl journals append -l app.gazette.dev/message-type=bikeshare.Ride --framing=lines --mapping=modulo --log.level=debug







Initializing a Store

Next we need a place to keep some state. PostgreSQL is running in the cluster
with some initialized tables:

# This assumes you've port-forwarded the postgres pod.
$ psql postgres://test:test@localhost:32432 -c '\d'
              List of relations
 Schema |        Name         | Type  | Owner
--------+---------------------+-------+-------
 public | gazette_checkpoints | table | test
 public | rides               | table | test
(2 rows)





The rides relation directly models rides from our dataset, while the
gazette_checkpoints table will be used to persist checkpoints.



Consumer Transactions and Checkpoints

Consumers process messages in transactions. The lifetime of a transaction is
managed by the framework. Generally a transaction begins when a message is ready
to be processed; it will continue so long as further messages can be immediately
processed without blocking, and will close when the transaction stalls (ie because
no further messages are ready). Put differently, consumers dynamically batch input
messages into transactions based on message flow rate. At low rates, transactions
stall immediately and end-to-end latency is minimized. At very high rates,
transactions may process thousands of messages before closing, which can massively
boost processing efficiency.

Of course much of this is configurable, and there are some further nuances to be
aware of. See
consumer.Application [https://godoc.org/go.gazette.dev/core/consumer#Application]
godocs for more detail.

In addition to persisting arbitrary and user-defined state, part of a
consumer.Store [https://godoc.org/go.gazette.dev/core/consumer#Store]’s job
is to persist
checkpoints [https://godoc.org/github.com/gazette/core/consumer/protocol#Checkpoint]
generated by the consumer framework. These checkpoints are committed in the
same transactions which contain user modifications of the store, ensuring that
the ultimate state of the store is kept in lock-step with the checkpoint which
produced that state.

consumer.SQLStore [https://godoc.org/go.gazette.dev/core/consumer#SQLStore]
is a store implementation which utilizes a remote RDBMS (the postgres instance
we just started). It uses the gazette_checkpoints table we created to persist
consumer checkpoints.



Consumer Grouping

Consumer applications run as scalable, ephemeral deployments. Like brokers,
consumers rely on Etcd for consensus over distributed state of the system
(and in fact, consumers and brokers share a common
allocator [https://godoc.org/go.gazette.dev/core/allocator] implementation for
maintaining this consensus).

When a consumer deployment is scaled up, started processes “find” their
application group through a shared Etcd prefix (defined by the
--etcd.prefix flag). Member process announcements, assignments,
and “ShardSpecs” all live under this common prefix.


Each unique deployment of a consumer application must use a different
--etcd.prefix flag, and by convention the prefix composes the
application name with the release name. See the
consumer kustomize manifest
for best-practice on setting an appropriate prefix.






ShardSpecs

Much like journals are the unit-of-work for a Gazette broker cluster, shards
are the unit-of-work for a Gazette consumer deployment. A shard can be thought
of as the composition of an Application, one or more source journals to be read,
and a stateful store. Shards are declared and configured by a
ShardSpec.

The most common pattern is to define ShardSpecs that maintain a one-to-one
correspondence with journal partitions of a topic, as is done with this example.
However, ShardSpecs are highly configurable and a variety of other patterns are
also possible. Labels can be used to attach metadata to ShardSpecs, and applications
can interpret labels of the spec to drive customized processing behaviors.

For this example, ShardSpecs are configured to dynamically determine the
backing store for each Shard: either a “remote” PostgreSQL database,
or an embedded SQLite database. As with gazctl journals, the gazctl shards
command can be used to inspect, select over, apply, and edit ShardSpecs.

$ gazctl shards list -p -L store
+-----------------+---------+----------------------------------------------+----------+
|       ID        | STATUS  |                   PRIMARY                    |  STORE   |
+-----------------+---------+----------------------------------------------+----------+
| cycles-part-000 | PRIMARY | consumer-bike-share-78bcdbcf8b-q9vxl:PRIMARY | postgres |
| cycles-part-001 | PRIMARY | consumer-bike-share-78bcdbcf8b-t85tb:PRIMARY | postgres |
| cycles-part-002 | PRIMARY | consumer-bike-share-78bcdbcf8b-t85tb:PRIMARY | sqlite   |
| cycles-part-003 | PRIMARY | consumer-bike-share-78bcdbcf8b-q9vxl:PRIMARY | sqlite   |
+-----------------+---------+----------------------------------------------+----------+

# List ShardSpecs using a PostgreSQL store, in YAML format.
$ gazctl shards list -p -l store=postgres -o yaml
common:
  max_txn_duration: 1s
  labels:
  - name: store
    value: postgres
shards:
- id: cycles-part-000
  sources:
  - journal: examples/bike-share/rides/part-000
  revision: 77
- id: cycles-part-001
  sources:
  - journal: examples/bike-share/rides/part-001
  revision: 77

# Inspect the processing "lag" of each shard (ie, an upper-bound estimate
# of the number of bytes behind the current journal head).
$ gazctl shards list --lag
+-----------------+---------+------------------------------------------+
|       ID        | STATUS  |                   LAG                    |
+-----------------+---------+------------------------------------------+
| cycles-part-000 | PRIMARY | examples/bike-share/rides/part-000:0     |
| cycles-part-001 | PRIMARY | examples/bike-share/rides/part-001:10930 |
| cycles-part-002 | PRIMARY | examples/bike-share/rides/part-002:7496  |
| cycles-part-003 | PRIMARY | examples/bike-share/rides/part-003:7774  |
+-----------------+---------+------------------------------------------+






Having multiple store types in use with a single consumer is pretty a-typical,
and it’s downright silly in this case. The bike-share example does so only
to demonstrate the possibility, and to cover more ground.






Poking at PostgreSQL

Run a query a few times to see that ride data-points are being loaded into the database:

$ psql postgres://test:test@localhost:32432 -x -c 'SELECT uuid,bike_id, start_time, start_station_name FROM rides ORDER BY start_time DESC LIMIT 3;'
-[ RECORD 1 ]------+-------------------------------------
uuid               | 032aa58b-f9b7-11e9-b400-0d04970419de
bike_id            | 29568
start_time         | 2019-09-30 17:53:32.845
start_station_name | E 2 St & Avenue A
-[ RECORD 2 ]------+-------------------------------------
uuid               | 9a619832-f9b6-11e9-ac00-0d04970419de
bike_id            | 32057
start_time         | 2019-09-27 13:55:42.457
start_station_name | Lafayette St & E 8 St
-[ RECORD 3 ]------+-------------------------------------
uuid               | bdd88fb7-f9b6-11e9-8800-0d04970419de
bike_id            | 15307
start_time         | 2019-09-28 14:09:05.298
start_station_name | Grand Army Plaza & Plaza St West





We also see that a checkpoint row is being regularly updated for shards
cycles-part-000 and cycles-part-001 (but not the other two shards).

$ psql postgres://test:test@localhost:32432 -x -c 'SELECT * FROM gazette_checkpoints;'
-[ RECORD 1 ]------------------------------------------------------------------------------------------------------------------------------------------------------------
shard_fqn  | /gazette/consumers/bike-share-bike-share/items/cycles-part-001
fence      | 2
checkpoint | \x0a4b0a226578616d706c65732f62696b652d73686172652f72696465732f706172742d303031122508c4e09642121e0a060d04970419de121409b5cf95c4709b9f1e10ffffffffffffffffff01
-[ RECORD 2 ]------------------------------------------------------------------------------------------------------------------------------------------------------------
shard_fqn  | /gazette/consumers/bike-share-bike-share/items/cycles-part-000
fence      | 1
checkpoint | \x0a4b0a226578616d706c65732f62696b652d73686172652f72696465732f706172742d303030122508a6ced542121e0a060d04970419de121409b1cf95c4709b9f1e10ffffffffffffffffff01






The fence column is used to implement a transactional write fence.
It’s increased with each re-assignment of the shard to a new process.






Tailing Found Cycles

The bike-share application processes records
using a few SQL queries:


	It loads the unmodified record into the rides table.


	It windows rides rows of the record’s bike ID to the N most-recent rides.


	It uses a recursive common table expression to search for a graph cycle of
length >= 10 which was just completed by the bike. If found, it’s written
out as a Cycle message.




We can follow along with cycles as they’re found by tailing their partitions,
and running through jq [https://stedolan.github.io/jq/] to pretty-print.
It turns out they’re not all that anomalous!

$ gazctl journals read -l app.gazette.dev/message-type=bike_share.Cycle --block | jq '.'
{
  "UUID": "0d2b9119-f9b7-11e9-8c01-6fb7f64cdd31",
  "BikeID": 18871,
  "Steps": [
    {
      "Time": "2019-09-25T12:57:15.265Z",
      "Station": "Park Pl & Vanderbilt Ave"
    },
    {
      "Time": "2019-09-25T13:05:15.297Z",
      "Station": "Berkeley Pl & 7 Ave"
    },
    {
      "Time": "2019-09-25T13:34:49.286Z",
      "Station": "Schermerhorn St & Bond St"
    },
    {
      "Time": "2019-09-28T15:45:50.255Z",
      "Station": "Wyckoff St & Bond St"
    },
    ... etc ...
  ]
}






In the output, you’ll also see messages like
{"UUID":"0d2b9119-f9b7-11e9-9002-6fb7f64cdd31","BikeID":0,"Steps":null},
which are used to provide exactly-once semantics. These are messages that were
returned by
message.NewAcknowledgement [https://godoc.org/go.gazette.dev/core/message#Message],
and bear UUIDs which acknowledge a set of prior messages in a transaction
that may now be considered as committed.






Embedded Stores and Recovery Logs

Using a remote database as a shard’s store can sometimes not be ideal: our bike-share
application is issuing an expensive query to the database and waiting for its response
with every message processed. That introduces two fundamental problems:


	The query puts significant CPU pressure on the database. We can scale up a
consumer by adding processes (up to the number of ShardSpecs), but there’s
only one database, and eventually it can become a bottleneck.


	The database is accessed over a network, which means our consumer can never
process a message any faster than the network round-trip time to the DB. At
scale, even sub-millisecond RTTs can be a substantial throughput bottleneck.




The usage pattern and database driver implementation matter quite a bit: if the
application is only loading into the database, and those loads are asynchronous,
then the network RTT can often be amortized away. Or the application may be
able to cache and aggregate in-memory, turning many source events into a handful
of queries & table updates. And of course, at smaller scales using a RDBMS is
often an easy and convenient choice.

For uses cases which can benefit, Gazette offers several embedded consumer.Store
implementations. Embedded stores are databases which live within the consumer
process, and which make temporary use of disks local to the machine
(like local SSDs [https://cloud.google.com/compute/docs/disks/#localssds]).
Examples of available stores include simple
JSON files [https://godoc.org/go.gazette.dev/core/consumer#JSONFileStore],
RocksDB [https://godoc.org/go.gazette.dev/core/consumer/store-rocksdb],
and even SQLite [https://godoc.org/go.gazette.dev/core/consumer/store-sqlite].

Consumers deploy as ephemeral processes, and no reliance is made on the
availability of a particular host machine or the durability of its disks.
To ensure durability, embedded stores are replicated to a
recovery log [https://godoc.org/go.gazette.dev/core/consumer/recoverylog]:
a journal to which file operations of the store are sequenced as they’re
being made. Operations are captured through low-level integrations with
store-specific OS interfaces (eg afero [https://github.com/spf13/afero],
rocksdb::Env [https://github.com/facebook/rocksdb/blob/master/include/rocksdb/env.h#L133],
or SQLite VFS [https://www.sqlite.org/vfs.html]). This has the great advantage
of making instrumentation transparent to applications, which use standard
clients and can access the full range of store capabilities and configuration.

Recovery logs allow a new process to recover the on-disk state of a store by
reading the log and re-playing its file operations to the local disk. Hot standbys
live-tail the log to locally apply the operations of the current primary. To speed
up cold-start playback, the primary will periodically persist “hints” to Etcd which
inform players of how to efficiently read the log, by skipping over journal segments
known to contain only file data that’s no longer needed. Hints are also used to
periodically “prune” the log by removing journal fragments which are known to not
contain live file operations.

Shards cycles-part-002 and cycles-part-003 each use an embedded SQLite
instance instead of the shared PostgreSQL database. Other than the choice of
store, the message processing flow and particular SQL statements used by these
shards are identical.


The gazctl shards prune -l my-selector command prunes recovery log fragments
which are no longer referenced by recovery hints of the selected shards.






Querying Bike History

The consumers framework makes it easy to offer APIs over gRPC, HTTP, and other
protocols. APIs are often a great way of “activating” data that’s continuously
indexed and distributed across the embedded stores of a scaled consumer
application deployment. They’re typically blazing fast since the API processing
logic is already co-resident with the data being served.

The bike-share example offers a simple HTTP API for fetching the most recent
rides of a given Bike ID.

$ curl "http://localhost:32190/api/bikes?id=38536"
{"UUID":"afd344a9-f9e9-11e9-8000-573b3770b247","StartTime":"2019-09-07T00:04:31.064Z","EndTime":"2019-09-07T00:12:31.21Z","StartStation":"W 87 St \u0026 Amsterdam Ave","EndStation":"E 84 St \u0026 3 Ave"}
{"UUID":"b0d6a8e2-f9e9-11e9-b000-573b3770b247","StartTime":"2019-09-07T07:14:37.698Z","EndTime":"2019-09-07T07:20:45.978Z","StartStation":"E 84 St \u0026 3 Ave","EndStation":"E 72 St \u0026 York Ave"}
{"UUID":"b1caccfd-f9e9-11e9-b800-573b3770b247","StartTime":"2019-09-07T08:43:39.806Z","EndTime":"2019-09-07T08:51:35.018Z","StartStation":"E 72 St \u0026 York Ave","EndStation":"E 67 St \u0026 Park Ave"}
{"UUID":"b5e7a842-f9e9-11e9-ac00-573b3770b247","StartTime":"2019-09-07T11:14:52.864Z","EndTime":"2019-09-07T12:02:37.312Z","StartStation":"E 67 St \u0026 Park Ave","EndStation":"Liberty St \u0026 Broadway"}
... etc ...





Consumers run as distributed applications, and in many cases a particular API
request may be served only from a specific ShardSpec (as is the case here,
since shards are partitioned on bike ID). For these cases it’s best practice
to offer appropriate server-side proxying of API requests, by mapping requests
to corresponding journal partitions, and
resolving [https://godoc.org/go.gazette.dev/core/consumer#Resolver] to the local
or remote shard primary. See bike-share’s
api.go for a complete example of how this may be done.





          

      

      

    

  

    
      
          
            
  
Summing over Multiplexed File Chunks

This example application implements a SHA-summing consumer which incrementally
sums file “chunks” and publishes their final sum. It’s implemented using
the Gazette consumer [https://godoc.org/go.gazette.dev/core/consumer] framework.

The complete implementation can be found in package
go.gazette.dev/core/examples/stream-sum [https://godoc.org/go.gazette.dev/core/examples/stream-sum].



Objectives

A number of “chunker” jobs will randomly create and publish “chunks” of number of files.
Each chunker will publish incremental chunks of many simultaneous files. A “summer”
consumer must accumulate the running SHA-sum of each file and, when the file is
completed, it must emit a final SHA-sum of its content. Each chunker job will
independently verify that a final and correct SHA-sum is published in a timely fashion.

This is a fully self-contained example, and also serves as a soak test for Gazette.
Chunkers and summers run continuously, and each verifies expected guarantees of
Gazette brokers and consumers: that all messages are delivered exactly one time,
within a bounded SLA. If any of these guarantees are violated, the summer or chunker
process will crash with an error.

These guarantees are further tested by a suite of
crash tests which crash and partition
components of the application, like Etcd, gazette brokers, and consumer processes.



Deploy the Example to Kubernetes

Deploy the example to the stream-sum namespace of a test Kubernetes cluster,
such as Minikube or Docker for Desktop:

$ kubectl apply -k  ./kustomize/test/deploy-stream-sum/
namespace/stream-sum created
serviceaccount/minio created
configmap/etcd-scripts-24t872gm88 created
configmap/example-journal-specs created
configmap/gazette-zonemap created
configmap/generate-shards-stream-sum-9k96chk9cg created
configmap/minio-create-bucket-mm6f469cbt created
configmap/postgres-init created
secret/gazette-aws-credentials created
secret/minio-credentials-fgdm8fkm5m created
service/consumer-stream-sum created
service/etcd created
service/gazette created
service/minio created
deployment.apps/consumer-stream-sum created
deployment.apps/gazette created
deployment.apps/minio created
statefulset.apps/etcd created
job.batch/apply-journal-specs created
job.batch/apply-shard-specs-stream-sum created
job.batch/chunker-stream-sum created
job.batch/minio-create-bucket created








          

      

      

    

  

    
      
          
            
  
Serving up a Real-Time Language Model

This example application implements a simple language model of N-grams which are
continuously extracted and accumulated from published source documents, all using
the Gazette
consumer [https://godoc.org/go.gazette.dev/core/consumer] framework.

The complete implementation can be found in package
go.gazette.dev/core/examples/word-count [https://godoc.org/go.gazette.dev/core/examples/word-count].



Objectives

Our goal is to deploy an application which presents a real-time language model service.
The model we’ll use is very basic, as a simple collection of bi-gram counts.

It should offer a gRPC API for publishing new documents to be incorporated into the
language model, and an API for fetching the current counts of a given bi-gram or
prefix. Clients interact with it over its gRPC API – the fact that it’s built as a
Gazette consumer could be considered an implementation detail.

Finally, we’ll include a command-line tool wordcountctl for interacting with the service.


This example has a dependency on RocksDB, which means it cannot be directly
go install’d without having appropriate development libraries available.
Use the gazette/examples docker image to run pre-built binaries.






Deploy the Example to Kubernetes

Deploy the example to the word-count namespace of a test Kubernetes cluster,
such as Minikube or Docker for Desktop:

$ kubectl apply -k  ./kustomize/test/deploy-word-count/
namespace/word-count created
serviceaccount/minio created
configmap/etcd-scripts-24t872gm88 created
configmap/example-journal-specs created
configmap/gazette-zonemap created
configmap/minio-create-bucket-mm6f469cbt created
configmap/postgres-init created
configmap/publish-docs-word-count-gkhd5f8hdf created
configmap/shard-specs-word-count-5dgc7bg848 created
secret/gazette-aws-credentials created
secret/minio-credentials-fgdm8fkm5m created
service/consumer-word-count created
service/etcd created
service/gazette created
service/minio created
deployment.apps/consumer-word-count created
deployment.apps/gazette created
deployment.apps/minio created
statefulset.apps/etcd created
job.batch/apply-journal-specs created
job.batch/apply-shard-specs-word-count created
job.batch/minio-create-bucket created
job.batch/publish-docs-word-count created





The Kustomize manifest starts the consumer-word-count deployment, its
dependencies, jobs to
create specifications,
and a job publish-docs-word-count which
publishes a small set of documents
to the application.



Query for Counts

Port-forward to the consumer in a new tab:

$ kubectl -nword-count port-forward svc/consumer-word-count 32190:8080





Then use docker to run wordcountctl and query for a specific bi-gram.
The consumer process will proxy the request to the appropriate shard:

$ docker run --network host --env CONSUMER_ADDRESS=http://localhost:32190 --rm -it gazette/examples wordcountctl query --prefix="the city"





We can also query a specific shard for all of its bi-grams having a prefix:

$ docker run --network host --env CONSUMER_ADDRESS=http://localhost:32190 --rm -it gazette/examples wordcountctl query --prefix="the" --shard=shard-000








          

      

      

    

  

    
      
          
            
  
Design Goals (and Non-Goals)

Gazette has influences and shares similarities with a number of other projects.
Its architecture also reflects several departures from the solutions of those
influences.


	Journals provide global record ordering and publish/subscribe.




Much like Kakfa, LogDevice, Apache BookKeeper, and others. These properties are
the basic building blocks for assembling platforms composed of streaming,
decoupled, and event-sourced services.

However, where these systems are record oriented, journals are byte oriented.
They are eminently suited for streams of delimitated records, but responsibility
for representation, delimitation, packing, and parsing are responsibilities of the
client and not the broker. This simplifies broker implementation and improves
performance, as the broker can concern itself with additive byte sequences rather
than granular messages.


	Brokers do not provide long-term storage of journal content.




This responsibility is offloaded to a “blob” object store such as S3, Google Cloud
Storage, Azure, HDFS, etc. Use of a separate storage backend stands in contrast to
Kafka, where brokers are responsible for log storage. LogDevice and Apache Pulsar
(with BookKeeper) use a similar technique of decoupling log sequencing from storage.

Separation of storage is motivated by multiple factors. Most importantly, a broker
service like Gazette typically supports diametrically opposed use-cases: capturing
critical writes of a system as they occur, and serving highly scaled reads of
historical written data. By decoupling storage, we can separately scale the write
capacity of the system from its read capacity. A second factor is that storage
separation enables taking advantage of services like S3 or GCS, which are highly
elastic and suited for scaled read IOPs, and require no explicit provisioning or
disk resizing.


	Journals, once written, are immutable.




Gazette journals are designed to serve as the long-term system of record for data
within the platform. Journals may be trimmed by removing content from the beginning
or even the middle of the log, but an offset range can never be mutated once
written. This is similar to systems like LogDevice and BookKeeper and distinct
from Kafka, whose brokers implement “compaction” of logs based on a keyed primary
message ID.

Implementing compaction within Gazette brokers is not feasible due to its lack
of access to the structure and semantics of records stored in journals. This would
seem to make implementing a system like Apache Samza or Kafka Streaming on Gazette
impossible, as both utilize Kafka topics to replicate application key/value
state, and rely on this mechanism to compact replication logs over time.

Instead, Gazette consumers use an insight that embedded LSM-Tree DBs such
as RocksDB already perform regular compaction, and structure their on-disk
state as a series of append-only and immutable files. Rather than replicate and
replay individual key/value operations, Gazette consumers instead observe and
sequence the file operations of the database itself into a “recovery log” journal
which can be pruned over time, and cheaply “tailed” by hot-standbys which replay
the file operations to local disk (and do not otherwise incur any compaction cost).


	Brokers and Consumers are ephemeral, disposable, and quick to start up.




While they make good use of available local disk, they have no reliance on
persistence of mounted data volumes. From a cold-start, brokers are able to serve
journal read, append, and replication operations without having to first copy
any prior written data. As a trade-off, reads may block until the broker observes
that recent written content has been persisted to the backing blob store.


	Non-goal: Topics or higher-level organizing concepts.




A common tactic to achieve horizontal scale-out of high volume message flows
is to spread a collection of like messages across a number of “partitions”,
which collectively form a “topic”. Many systems, like Kafka or Pulsar, provide
a formal representation of topics as an API concern. Gazette does not, and
understands only journals.

Instead, Gazette borrows Kubernetes’ notion of “labels”, which can be applied
to resources like journals, and “label selectors” which define queries over
declared labels. Topics can informally be implemented as a label and selector
like topic=my_logs but selectors allow for additional flexible expressions
(eg, topic=my_logs, region in (apac, us), or topic in (my_logs, my_new_logs)).


	Simple file-based integration with existing batch processing work-flows.




Spans of journal content (known as “fragments”) use a content-addressed naming
convention but otherwise impose no file structure and contain only raw journal
content, optionally compressed. Fragments are also written under predictable
prefixes to the backing blob storage service, which means existing batch
processing work-flows can “integrate” with Gazette by directly reading and
watching for files within the blob store, using a service (such as Amazon SNS) to
receive file notifications, or using a library which implements such polling
already (such as Spark DStreams).


	Fast, zone/rack aware balancing and fail-over.




Gazette brokers and consumers dynamically balance work items (eg, journals)
across the current cohort of application instances deployed by the operator.
Those instances may come and go, or even fail, at any time.

Failure of a broker or consumer process should be detected and fail-over quickly,
and should be tolerant to rack or whole availability zone failures. Such failures
should never result in data-loss, or interrupt broker or consumer services for more
than the seconds it takes to detect failure and remove affected members from the
topology, appropriately re-balancing their load.

Brokers are able to immediately serve a newly assigned journal without any
replication delay. Gazette consumers may optionally have a number of “hot
standbys” which replicate database file state and can immediately take over
for a failed peer.


	Non-goals: distributed state & consensus.




Gazette uses Etcd v3 as the single source-of-truth for distributed state (eg
current membership, journal specifications, and process assignments). Etcd v3
leases are used to detect process failures and gate distributed topology changes.
Gazette employs an “allocator”, running atop Etcd API primitives, which solves
for distributed zone-aware assignment and horizontal rebalancing.


	Non-goals: resource management and job scheduling.




Gazette does not manage workloads or services, such as the provisioning or
scaling of brokers or consumers, and relies on an external orchestration framework
to perform these tasks. The authors use and enthusiastically recommend Kubernetes.




          

      

      

    

  

    
      
          
            
  
Operational Considerations

This document offers some recommendations based on lessons learned from running
Gazette in production at LiveRamp.


Cloud Costs

At LiveRamp, Gazette is deployed entirely in the cloud: both clients and brokers
run on a Kubernetes cluster whose underlying nodes are spread across multiple
zones, and journal content is persisted to cloud storage. While relying on cloud
infrastructure makes it easy to scale usage up and down as needed, it can also
make the task of predicting costs more difficult, especially for high-traffic
systems like ours that deal with data on the order of terabytes each month.


Storage Costs


	For non-recovery log journals, define retention policies for each category of
data according to its usage requirements, and then enforce these by configuring
lifecycle policies via the cloud storage provider. For example, one could have
a bucket’s files be transitioned to cold storage X days after creation (which
would keep the data backed up but not immediately accessible for a much lower
cost than standard storage), and then finally have it transition to expiry.


	For backing stores that do not support lifecycle policies, and for more fine-
grained control over retention, use gazctl journals prune.
By invoking gazctl journals prune -l my-selector, one can have all matching
journal fragments that match the label selector and are older than the current
configured retention (as specified by the fragment.retention property in the
JournalSpec) be deleted across all configured backing stores. This could be
automated via a cron or a regular Kubernetes job. Note that the tradeoff of
adopting this approach over (1) is that it entails additional API operations
for the deletes, which may cost more depending on what store is being used.


	For recovery log journals, use the gazctl shards prune command-line tool
periodically to delete fragments that are no longer needed. Note that a
simple time-based lifecycle policy like what is described in (1) will not
work for recovery logs, because historical portions of the recovery log may
still contain current database content. To identify whether a recovery log
fragment is still needed, we have to examine the shard’s current hints
(which is how gazctl shards prune works), and the age of the fragment is
not relevant.






Data Transfer Costs

If clients and brokers are spread across multiple availability zones or even
regions, consider the costs incurred by inter-zone traffic. In the case of
writes, the client must issue its write to the current primary broker of the
journal, regardless of whether that primary is in the same zone as the client.
The primary in turn replicates the data to all its peers, again regardless of
their zones. All journals are assigned to brokers across more than one zone
to ensure the durability of writes in the face of zone failures, which means
that a write will always lead to inter-zone traffic.

Cross-zone data transfers are a price that must be payed for highly durable
appends, but Gazette does attempt to minimize cross-zone transfers incurred at
read time by having clients prefer to read from a replica that is in the same zone
as itself. This preference is automatically specified if one uses the offical helm
charts for deployment.

In those charts, we supply the Gazette client with the preferred zone (i.e. the
zone that the client itself is in) by populating the consumer.zone flag with the
correct zone: https://github.com/gazette/core/blob/master/charts/consumer/templates/deployment.yaml#L54.
(That zone is generated by a script, node-zone.sh, that takes a Kubernetes node
name as input and gives the zone of that node as output.) We also do the same for
the Gazette broker by populating the broker.zone flag: https://github.com/gazette/core/blob/master/charts/gazette/templates/deployment.yaml#L47.
If one is not using the official helm charts and wishes to have a zone-aware
read strategy be enforced, then one would have to ensure that the consumer.zone
and broker.zone flags are correctly set during deployment.






          

      

      

    

  

    
      
          
            
  
Gazette


Architecture Overview & Design Documentation


Overview

Gazette is, at its core, a highly distributed (though not highly available)
byte-stream transaction engine. It provides useful guarantees about reads and
writes and stores all data in cloud storage. * This final property makes it
powerful in the sense that reading data out of it does not necessarily require
a connection to a broker (server)
if you have access to cloud storage.


	*

	While the current implementation uses cloud storage, Gazette could also
be used with non-cloud storage systems such as HDFS.





It consists of several pieces:


	A pool of broker-nodes, which are responsible for deciding what data should
be written to persistent storage and then writing it to an ongoing
byte-stream called the journal


	The representation of the journal on disk, which serves as a transition
point between parts (1) and (3)


	A set of consumer processes, which are responsible for reading from the
on-disk representation of the journal and converting it into a form that can
be sent to a client.







Architecture

From the perspective of a writer to the Gazette system, Gazette provides an
append-only journal which accepts byte-oriented chunks of data. Writes are
atomic – either they are written in their entirety or not at all.


Broker-Nodes & Writing the Journals.

After a writer has sent a write request to Gazette, it falls to the broker-nodes
to decide where and whether the content will be written. A broker-node is a
server process, and we maintain a pool of broker-nodes to be used for writing to
the journals.


Assigning Brokers to a Journal

Gazette uses etcd [http://github.com/coreos/etcd] to track broker membership, ie. the complete set of brokers
which are live. The etcd server ensures that each broker is aware of updates to
the topology, but is not aware of the journals or other concerns.

Gazette uses highest random weight hashing [http://en.wikipedia.org/wiki/Rendezvous_hashing] to assign a responsible broker and
set of replicas for each journal, which allows each broker to independently
determine which set of brokers is responsible for a specific journal. The
journal name is used as a routing key. Note that a single broker may be a member
of more than one replica set, and thus responsible for more than one journal.

The assignment of brokers to journals is only changed when the topology of the
larger broker pool changes, for example when a broker is added to or removed
from the pool. Gazette strives to maintain existing topology, and it is
preferable that no more than two broker-nodes are inaccessible or down at any
one time since the replication factor is three.

The three broker-nodes chosen for writes to a specific journal are responsible
for determining the current write offset in the journal, and for writing the
data to each of three copies of the journal. Through the highest random weight
hashing and the topology view provided by etcd, the brokers achieve consensus
and elect a master broker. This master is responsible for coordination and
communication with the client writers. Writes will be replicated to the other
brokers in the replica set.

Consider the following example, where we have a pool of four brokers with the
given HRW values for a given journal J. Broker-2, having the highest HRW value
for J, will be elected master for that journal’s broker replica set. Broker-1
and Broker-0, having the second-highest and third-highest HRW values
respectively, will be the other two members of the replica set.


[image: _images/assigning_brokers_example.jpg]



In this example, when Broker-2 fails and is removed from the topology of the
broker pool, the next-highest-ranked broker (Broker-1) will become master. The
new third-highest-ranked broker (Broker-3) will join the replica set for writes
to journal J.



Write Transactions

The steps of a successful write transaction are as follows:


	A client writer wants to append to a journal, and sends a write request to
the master broker-node. If the broker does not believe itself master, the
write request is rejected.


	The master looks at the write and determines that it is writing to the
current journal, as well as what master believes is the current write-offset.
The master will queue up any other competing writes.


	The master begins a two-phase commit [http://en.wikipedia.org/wiki/Two-phase_commit_protocol].  It sends (its idea of) the current
write-offset and the topology of the replica set to the other two
broker-nodes in the replica set.


	If a non-master broker-node agrees with master, it sends back a 100 continue
response [http://httpstatusdogs.com/100-continue] to the master.


	If master receives the continue response from all replica set members, it
enters the second phase of the commit. It will send the write to its own log,
and to the other members to be replicated.


	The master node can add on more of the queued write requests onto the same
transaction.


	Once master drains the existing write requests, it closes the request body
(replication stream.)


	Assuming success, each of the other two members of the replica set sends back
an event signifying that they have synced their data to disk.


	If all syncs are successful, master sends back a success message to the
writer. Otherwise, if anything has gone wrong, it sends back a failure.




On the other hand, due to partitions or other issues, the transaction may be
unsuccessful. For example, one of the broker-nodes may believe the write offset
has moved forwards while the others do not. If this is the case, all of the
brokers will use the highest write offset of all the brokers in the replica set.
† It is always safe to skip forward to a higher
write offset.


	†

	This happens either because master passes its higher write offset to the
other brokers in step 3, or because one of the other brokers passes back
its offset in step 4 above and the write fails.





Due to this property, the guarantee that Gazette makes is that writes will be
written at least once. There is no guarantee that writes will be written
exactly once.

With regards to the CAP theorem, Gazette provides C&P. It is not a highly
available system: in the case of a partition in the replica set, writes are not
allowed to continue. Writes must be buffered by the client until all three
brokers come back up and are available.




Representing the Journal On-disk.

Conceptually, Gazette presents an infinite journal abstraction to clients.
On-disk, the journal is implemented via fragments, files which capture part of
the journal’s stream of bytes. The fragment files are identified by their start
and stop offsets in the journal, and the SHA-1 hash of their contents.


[image: _images/rep_journal_ondisk_diagram.jpg]



We refer to a fragment that is being actively written as a spool. After a
certain period of time, each broker-node will close off its spool and upload the
fragment to cloud storage. The master broker will send hints of when to start a
new spool and to close the last one, such that brokers usually roll spools in
tandem and thus produce identical fragments. In a set-up where three brokers are
responsible for a series of write operations, we would ideally expect to end up
with three copies of a fragment containing those writes. In actuality, due to
failed writes, the three copies may not be identical and one or more copies may
be missing some of the writes.

When the three sets of fragments are uploaded to cloud storage, the client must
decide which of the fragments to pick. It makes the decision based off of a
heuristic, choosing the fragment that covers the requested offset and contains
the most content after the requested offset.



How the Journal Maps to Messages

Let’s pause to discuss how these on-disk fragments can be mapped back to the
original messages written by our writers, and how we organize them to enable
horizontal scaling of the overall system.

We can think of topics as a group of messages, which are captured via one or
more journal streams and written into fragments into cloud storage. Topics also
encompass a set of rules for how messages are distributed on-disk and how they
are marshalled to or unmarshalled from bytes.

However, the broker-nodes do not concern themselves with anything but bytes and
the journal. They are unaware of how those bytes map to messages, and do not
care about the overarching topics into which those messages fit.

Given this separation of concerns, one could expect that reading from a Gazette
journal might return an incomplete hunk of a message. This can happen, but only
in the case of partial HTTP reads. In terms of fully flushed writes, only
complete messages end up being written to Gazette. When a partial HTTP read does
occur, a client abstraction [https://git.liveramp.net/arbortech/workspace/blob/master/src/github.com/LiveRamp/gazette/journal/io.go>] exists to tell us how many more bytes to wait for
to read a complete message. At any rate, ensuring that writes are of entire
messages and nothing smaller makes Gazette capable of acting as a message-stream
rather than just a byte-stream.

Often, we do not want to record all messages corresponding to a particular topic
in one journal, as this limits horizontal scaling with regards to reads from the
journal. Instead, we want to partition the topic into several separate journal
byte streams. Different brokers can handle each partition, and topics are hashed
to determine which partition they are written to. On-disk, each topic has an
independent directory, and each partition has an independent directory inside
the relevant topic. The fragment files live inside the relevant partition
directory.


[image: _images/maps_to_messages.jpg]



A journal is equivalent to a partition: the journal is the abstraction used by
the writers, whereas the partitions are the abstraction used by the readers. For
the writers, the journal is a raw byte-stream. For the readers, the partitions
contain messages and are oriented around topics. Thus, when we discuss the
brokers, we refer to a journal; when we discuss reading from the file system, we
refer to partitions.

A good rule of thumb is to aim for as many partitions as there are concurrent
readers, henceforth called consumer shards, of the topic’s journals. Note that
while we aim for the number of consumer shards to be upper-bounded by the number
of partitions, this limit is not imposed by Gazette. However, we want to process
each message only once and to not handle coordinating which consumer shard is
responsible for which messages in the partition. Thus, ensuring that at most one
consumer shard acts on each partition is a reasonable design decision. (One
consumer is free to read from more than one partition.)



Consumers.

A consumer is a group of reader processes, or consumer shards. From a client
perspective, a consumer is responsible for serving reads. Internally, a consumer
relies on its consumer shards to read from each partition in a topic, and each
consumer shard may be responsible for one or more partitions.

The process by which consumer shards read from partitions is as follows:


	A consumer shard attempts to take an exclusive lock on a partition. If it
fails, end.


	If lock is successful, the consumer shard pulls current read offset from
etcd.


	The consumer shard begins to read and produce messages.


	Every [unit of time], the consumer shard persists its current read offset to
etcd.


	When read is complete, consumer shard releases the lock.




We use highest random weight hashing to associate consumer shards with
partitions, which is an imperfect system as some consumer shards may be
unutilized. There is room for improvement in the matching process.

A consumer is further responsible for sending notices to the consumer shards
that they should ‘check point’, ie. write their current offset back to local
storage. This local storage is likely to be a database, where local state
(including the read offsets) is represented and written to.

We use RocksDB [http://github.com/facebook/rocksdb] as a local
storage engine for the consumers, due to the use of LSM trees [https://www.cs.umb.edu/~poneil/lsmtree.pdf]. We plan to
write custom hooks for RocksDB to make use of the output of their compaction. We
can transform the compacted records to write updated values to wherever we
desire. This is discussed more in the document linked in the (Joins) section
below.

So far, we have covered the core components of Gazette. Below, we will discuss
future, planned additions to the Gazette system, and their effects on Gazette’s
basic architecture.


Tracking Local State.

When performing a join, consumers need a way of tracking local state over time.
This local state includes the read offset discussed above, but must also
encompass the current state of the join operation. Since a consumer may fail
mid-join, we want to ensure that a new consumer can pick up where the failed
consumer left off, to avoid redoing work or duplicating results. Thus, the
storage of local state must be resistant to failure.

The current idea is to use a local database which supports transactions. Each
consumer will be responsible for committing local state to a distinct local
database storage.





Glossary.


	Broker-node

	An etcd server that handles write requests to the journal. Responsible for
tracking the write offset and opening and closing spools. Sometimes
abbreviated to broker.



	Consumer

	A conceptual ‘reader’ of one or more processes, responsible (from the client
perspective) for serving reads. Consumers typically implement continuous
map/reduce operations, often maintain state, and are scaled & formed of a
grouping of multiple consumer shard processes.



	Consumer shard

	An individual reader process, responsible for consuming one partition of a
topic. Together with its peers, it implements a consumer. Sometimes
abbreviated to shard.



	Dataflow

	A directed acyclic graph composed of one or more chained consumers, which
describes a continuous computation.



	Event

	Something that happened, usually captured in a message and written as bytes to
the journal.



	Fragment

	A file containing part of the journal’s stream of bytes.



	Journal

	A conceptual, infinite-length byte stream abstraction, which supports reads
from arbitrary offsets (including blocking reads from its “head”), and
transactional appends to the head coordinated by Gazette broker-nodes.
Equivalent to a partition.



	Messsage

	An event, represented in a specific format for Gazette.



	Broker replica set

	A selection of three broker-nodes, which are responsible for writing to a
journal. The members of the replica set are selected from a larger pool of
broker-nodes.



	Routing Key

	The key that is used as input to the hashing algorithm that decides which
journal is written to. Also called the partition key.



	Spool

	A fragment that is actively being written by a broker-node.



	Topic

	Abstraction: a conceptual stream of messages; a collection of related journals
that capture the same type of events, as well as a specification for how
messages are distributed. A topic is mapped across one or more Gazette
journals (“partitions”) by a routing key.



	Topic Partition

	An individual journal which, in concert with its peers, implements the
underlying storage for topic messages. A partition is a Gazette journal, when
referred to in the context of a topic. Sometimes abbreviated to partition.









          

      

      

    

  _images/maps_to_messages.jpg
Partition

Partitions correspond
1:1 with journals, it’s just
a matter of perspective.






_images/rep_journal_ondisk_diagram.jpg
Journal.
start

<start-stop-shal>





_images/assigning_brokers_example.jpg
Broker-0
HRW(1}=2

Broker-1

HRW()=3.

Broker-2
HRW()=2.

Broker-0
HRW()=2

Broker-1
HRW(3)=3





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





